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–  Mike Heroux 
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–  Carter Edwards 
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–  Radu Popescu 
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Challenges of Heterogeneous Many-Core 

• MPI-only not enough 
–  Need to port: it doesn’t work for accelerators. 
–  Inefficient: it misses a lot of shared-memory benefits. 

• MPI+ can entail significant work 
–  We want to minimize the number of code bases. 
–  We want to minimize the effort to add a new code base. 

• Programming language issues 
–  Many APIs require a particular language.  
–  Developers resent being told what language to use. 

•  Lib/User interface issues 
–  Extending the library should not introduce serial bottlenecks. 
–  Shouldn’t require users to be shared-memory API experts. 
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Algorithm R&D Directions 

• Current focus on MPI+X, where X is any/all  
reasonable industry standard. 
–  Distributed memories ! distributed memory programming 

• New efforts on efficient kernels and problem setup 
• Support for embedded UQ and optimization 
• Krylov solvers for emerging problems (e.g., UQ): 
–  Interacting subspace methods for simultaneous/sequenced 

systems (incl. block and recycling methods) 
–  Communication avoiding methods for single RHS systems 
–  Numerically fault-resilient solvers, e.g., FT-GMRES 

• Mixed/multi-precision solvers and preconditioners 
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Software R&D Directions 

•  Templated C++ code 
–  Templating data allows more efficient use of cache and bandwidth. 
–  Templating data expands capability (e.g., integer limit, complex) 

• Generic shared memory parallel node 
–  Template metaprogramming shared memory parallel node API 
–  Static translation layer to, e.g., TBB, Thrust, OpenMP 

• Hybrid programming model 
–  Hybrid programming skeletons to support most common patterns 
–  Expose models for high-productivity, performance-portable apps 

• Non-intrusive modification of structures and algorithms 
–  Expose the shared-memory parallel node API to apps 
–  Static polymorphism to support node-optimized kernels 
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Example: A Benefit of Generic Kernels 
•  Tpetra distributed linear algebra library provides a set of 

methods for executing user kernels on vectors, e.g.: 
–  unary_transform<UOP>(Vector &v, UOP op) 
–  binary_transform<BOP>(Vector &v1, const Vector &v2, BOP op) 
–  reduce<G>(const Vector &v1, const Vector &v2, G op_glob) 

•  Fine level for expressiveness, coarser levels for convenience. 
// single-prec dot() with double-prec accumulator via custom kernel 
result = reduce( *x, *y,  myDotProductKernel<float,double>() ); 
// Or a composite adaptor and STL functors 
result = reduce( *x, *y, reductionGlob<ZeroOp<double>>( 
                                    std::multiplies<float>(),  
                                    std::plus<double>()) ); 
// Or using inline functors via C++11 lambda functions 
result = reduce( *x, *y, reductionGlob<ZeroOp<double>>( 
                              [](float x, float y)  {return x*y;} , 
                              [](double a, double b){return a+b;} ); 
// Or using a convenience macro to generate all of that 
result = REDUCE2( x, y,  x*y, ZeroOp<float>,  std::plus<double>() ); 
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Example: Inline, Templated MPI+ CG 

for (k=0; k<numIters; ++k) { 
  A->apply( *p, *Ap );                       // Ap = A*p 
  S pAp = REDUCE2(  
             p, Ap, 
             p*Ap, ZeroOp<S>, plus<S>() );   // p'*Ap 
  const S alpha = rr / pAp;                  // alpha = r’*r/p’*Ap 
  BINARY_TRANSFORM( x, p,   
                    x + alpha*p );           // x = x + alpha*p 
  S rrold = rr; 
  rr = BINARY_PRETRANSFORM_REDUCE( 
             r, Ap,                          // fused kernels 
             r - alpha*Ap,                   //   r - alpha*Ap 
             r*r, ZeroOp<S>, plus<S>() );    //   sum r'*r 
  const S beta = rr / rrold;                 // beta = r’*r/old(r’*r) 
  BINARY_TRANSFORM( p, r,    
                    r + beta*p);             // p = z + beta*p 
} 

•  The API supports rapid prototyping of algorithms 
–  Fun game: Find the MPI or threading! 
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Example: Recursive Multi-Prec. FPCG 
for (k=0; k<numIters; ++k) { 
  A->apply(*p,*Ap);                                // Ap = A*p 

  T pAp = REDUCE2( p, Ap,  
                   p*Ap, ZeroOp<T>, plus<T>());    // p'*Ap 
  const T alpha = zr / pAp; 
  BINARY_TRANSFORM( x,    p,   x + alpha*p  );     // x = x + alpha*p 
  BINARY_TRANSFORM( rold, r,   r );                // rold = r 
  T rr = BINARY_PRETRANSFORM_REDUCE( 
                    r, Ap,                         // fused: 
                    r - alpha*Ap,                  // r - alpha*Ap  
                    r*r, ZeroOp<T>, plus<T>() );   // sum r'*r 

  recursiveFPCG<TS::next,LO,GO,Node>(out,db_T2);   // recurse 

  auto plusTT = make_pair_op<T,T>(plus<T>()); 
  pair<T,T> both = REDUCE3( z, r, rold,            // fused: 
                 make_pair( z*r, z*rold ),         // z'*r, z'*r_old 
                        ZeroPTT, plusTT ); 
  const T beta = (both.first - both.second) / zr; 
  zr = both.first;  
  BINARY_TRANSFORM( p, z,   z + beta*p );          // p = z + beta*p 
} 
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Example: Simple CG 

• MPI+TBB parallel node 
•  #threads = #mpi x #tbb 
• Single codebase,  

solver instantiated on either 
qd_real or double. 
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Example: Recursive Multi-Prec. FPCG 

TBBNode initializing with numThreads == 2 
TBBNode initializing with numThreads == 2 
Running test with Node==Kokkos::TBBNode on rank 0/2 
Beginning recursiveFPCG<qd_real> 
   Beginning recursiveFPCG<dd_real> 
     |res|/|res_0|: 1.269903e-14 
     |res|/|res_0|: 3.196573e-24 
     |res|/|res_0|: 6.208795e-35 
   Convergence detected! 
   Leaving recursiveFPCG<dd_real> after 2 iterations. 
|res|/|res_0|: 2.704682e-32 
   Beginning recursiveFPCG<dd_real> 
     |res|/|res_0|: 4.531185e-09 
     |res|/|res_0|: 6.341084e-20 
     |res|/|res_0|: 8.326745e-31 
   Convergence detected! 
   Leaving recursiveFPCG<dd_real> after 2 iterations. 
|res|/|res_0|: 3.661388e-58 
Leaving recursiveFPCG<qd_real> after 2 iterations. 

•  Problem: Oberwolfach/gyro, N=17K, NNZ=1M 
•  Single solver code-base, templated on qd_real/dd_real/double 

2 iters. of qd_real, 
4 iters. of dd_real, 
99.9% of time spent 

in double iters. 

Solved to nearly 60 digits 
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Example: Problems with Generic Kernels 

• Generic kernels are not always successful: 
–  e.g., CRS mat-vec on GPUs is typically sub-optimal 

• Different sparse mat-vec kernels use different data structure. 
• We want vendors/researchers to substitute their own kernels. 
• One solution treats the kernel as a first-class object. 
–  Template param. dictating data structure and mat-vec kernel 

• Another specializes a class for a unique platform, non-
intrusively, e.g., CrsMatrix< double, XK6Node > 
•  These mirror the solutions undertaken by many others: 
–  static polymorphism via #ifdefs 
–  runtime polymorphism, often object-oriented 
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Closing Comments 

• What about issues reliability and resilience? 
–  How much can we handle via analytically robust algorithms? 

• What is the proper balance of generic kernels and 
architecture specific kernels? 
• We are current focused on leveraging generic 

programming and abstract interfaces for flexible 
implementations and easy composition for larger 
problems. 
•  The goal is to maximize programmer efficiency (both 

library and app) without significant performance 
sacrifices. 


